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USE OF THE COMPOUND NEGATIVE BINOMIAL-TRUNCATED

POISSON DISTRIBUTION IN THUNDERSTORM PREDICTION

Michael C. Carter and William O. Williford

University of Georgia

1. Introduction

This article summarizes an investigation into predicting the
number of thunderstorms (TH's) over a small area. It has been es-
tablished by Falls [1] that thunderstorm events (THE's), i.e., one
or more TH's, occurring over a large area are reliably predicted by
the negative binomial distribution. Williford and Carter [2] have
shown that a "modified" negative binomial distribution gives reliable
predictions for frequencies of thunderstorms over a "point" irre-
spective of the frequency of THE occureences. It is considered likely
that the number of TH's within a THE follows the Poisson law with the
zero class truncated. The resulting model gives probability predictions
over a small area (of undetermined size) as an individual THE is active

over a small area.

This research was supported by NASA under contract No. NASA 11175.



2. Probability Model

The probability generating function (PGF) technique will be used
to get the joint distribution for THE's and TH's and the marginal dis-
tribution of TH's. This technique is given in Bailey [3] or Feller [4].

We make the following assumptions:

a. THE's are distributed as negative binomial, i.e.,

T'(X+71) r X

Pr{X THE's} P'q" X = 0,i,2, , r>0, (1)
X'r(r)
with the PGF given by
F(t) = P'(l-qt)"F (2)
b, TH's, given a THE has occurred, are distributed as Poisson
with the zero class truncated, i.e.,
Pr{Y TH's|x=1} = exp(-u) w/Y'(l - exp(-1)) Y = 1,2, ... (3)
with the PGF given by
G(t) = (exp[u(t-1)] - exp(-u})/(1 - exp(-w)). (4)

Using these results the PGF for TH's is the expression F[G(t)], i.e.,

F[G(t)] = P"{1-q exp[u(t-1)] - exp(-n) ,-r “
1 - exp(-u)




Expanding this expression gives the probability of n TH's as the

.. n .
coefficient of t, i.e.,

prin TH's} = p LOT) pTgl E%P(-lu)(ln-k(l,nJ)un,
i=1 i!r(r) n!1 - exp(-w)]*

n>1,1i<n (6)

and the joint distribution of i THE's and n TH's (0 < i < n) is

given by

. . . N . n
Pr{i THE's, n TH's} = T(i+r) plqr exp(-i p) (i -k(i,n))u .

- (7N
e N el R
1.11}) o1 = CAPL\“H§
The function k(i,n) is a multinomial sum of the form
)
k(i,n) =i - T £ ...zt L (8)
J1dp 3y 3pR3y it
i
where LI jo=n and j_ >0 for m=1,2, ... i.
=l P m

Specifically, we have k(1,n) = 0, k(2,n) = 2, k(3,n) = 3{2"-2} + 3

and, in general,




i-1
k(i,n) = & @GEIHH%kG,m1, i>1,n>0. (9)
j=1

Using the result that

M I =1 = mean (TH)
dt
and
2 .
d°F[G(t)] d F[G(t)] _ ¢ d F[G(t)] 2 _
4e2 | e ® " | eer - 1 T | ¢21 17 = Var(mh)

we have the results

mean (TH) =T q u/[(1 - exp(-1))p] (10)

e

and

Var(TH) = mean(TH) {1 + u + ESE%LIEL }. (11)

3. Estimation

The expressions (5), (6) and (7) are quite involved and difficult
to use in estimating p, r, and u. However, by making one seemingly
reasonable assumption a simple estimation procedure is available.

Estimation of negative binomial parameters p-and r is straight
forward (see Cohen [5]). Assuming the number of TH's, given a THE

occurrence, is independent of the number of THE's occurring, the




truncated Poisson parameter u can be estimated by the usual techniques

(see Rider [6] and David and Johnson [7]).

Using the data in Appendices A and B and the techniques referenced
above estimates for p, r and u were calculated. Excluding the winter

months, these estimates are presented in Table 1.
Table 1

Estimates of the Parameters p, r, and .

7 £ g
March .558 .189 .645
April .6b0 .214 .507
May .567 . 460 .707
June .643 1.354 .624
July .684 1.893 .766
August .632 1.391 .686
September .655 .967 .807
October .570 .182 .525
Spring
March, April, May .557 .271 .650
Summer
June, July, August .652 1.523 .760
Fall
Sept., Oct., Nov. .571 . 302 .570

*These values are obtained from Falls [1].
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For evaluation of expressions (6) and (7) a FORTRAN program was
written (Appendix C). For the months and seasons in Table 1 and for
valuesof i =1, ..., 6, n =1i, ..., 6, these results are given in
Tables 2-12, In these tables the new totals represent the marginal
distribution for n TH's and column totals represent the marginal
distribution of i THE's. It should be noted that the probabilities
in Tables 2-12 will not sum to unity, This is due to the truncation

of n and i at 6.

Table 2

Probabilities of i THE's and n TH's for March

i=0 1 2 3 4 5 6 Total

n=0 . 8956 . 8956

1 .0 .0533 .0533

2 .0 .0172 .0100 .0271

3 .0 .0037 .0064 .0023 .0124

4 .0 .0006 .0024  .0022 . 0006 .0058

5 .0 .0001 .0007 .0012 . 0007 . 0002 .0028

6 .0 .0 .0001 .0005 . 0005 .0002 .0 .0013
Total .8956 .0748 .0196 .0062 .0018 . 0004 .0




Table 3

Probabilities of i THE's and n TH's for April

i=0 1 2 3 4 5 6 Total

n=0 .8964 .8964

1 .0 .0589 .0589

2 .0 .0149  .0110 .0259

3 .0 .0025  .0056 .0025 .0106

4 .0 .0003 .0016 .0019 .0006 .0045

5 .0 .0 .0004 .0008 .0006 .0002 .0020

6 .0 .0 .0001  .0002 .0003 .0002 .0 .0009
Total  .8964 .0767 .0186 .0054 .0016 .0004 .0

Table 4

Probabilities of i THE's and n TH's for May

i=0 1 2 3 4 5 6 Total

n=0 .7703 .7703
1 .0 . 1055 . 1055
2 .0 .0373  .0229 .0602
3 .0 .0088 .0162 .0056 .0306
4 .0 .0016 .0067 .005i .0014 .0156
5 .0 .0002 .0020 .0035 .0020 .0004 .0082
6 .0 .0 .0005 .001S .0016 .0007 .0001 .0043

Total .7703 .1534 .0484 .0165 .0050 .0011 .0001



Table 5

Probabilities for i THE's and n TH's for June

i=0 1 2 3 4 5 6 Total

n=0 . 5499 .5499
1 .0 .1915 .1915

2 .0 .0597  .0579 1177

3 .0 .0124  .0362 ,0167 .0652

4 .0 .0019 .0132 ,0156 .0047 .0354

S .0 .0002 .0035 ,0081 .0056 .0013 .0190

6 .0 .0 .0008 ,0030 .0039 .0020 .0003 .0101

Total .5499  .2658 .1115 .0434 .0144 .0033 .0003
Table 6
Probabilities for i THE's and n TH's for July

i=0 1 2 3 4 5 6 Total

n=0 .4873 .4873
1 .0 .1940 .1940
2 .0 .0743  .0590 .1333
3 .0 .0190 .0452 ,0161 .0803
4 .0 .0036  .0202 .0185 .0041 . 0465
5 .0 .0006 .0066 .0118 .0063 .0010 .0264
6 .0 .0001 .0017 .0054 .0053 ,0020 ,0002 .0147

Total .4873  .2915 .1328 .0518 .0157 .0030 . 0002




Table 7

Probabilities for i THE's and n TH's for August

i=0 1 2 3 4 5 6
. n=0  .5282
1 .0 .1882
% 2 .0 .0645  .0576
| 3 .0 .0148  .0395  .0167
4 .0 .0025 .0158 0172  .0047
5 .0 .0003  .0046 .0098 .0064 .0013
6 .0 .0 .0011 .0040 .0048 .0022 .0004

Total .5282 .2704 .1187 .0477 .0159 .0035 .0004

Table 8

Probabilities for i THE's and n TH's for September

i=0 1 2 3 4 5 6
’ =0 .6642
E 1 .0 .1441
g . 2 .0 .0581  .0318
% 3 .0 .0156  .0257 .0071
. 4 .0 .0032 .0121 .0085 .0016
; 5 .0 .0005  .0042 .0057 .0025 .0003
: 6 .0 .0001 .0012 .0028 .0022 .0007 .0001
Total  .6642 .2216 .0748 .0241 .0063 .0011 .0001

Total
.5282
.1882
.1221
.0710
. 0402
.0225

.0125

Total
.6642
.1441
.0899
.0483
.0253
.0133

.0070



Table 9

Probabilities for i THE's and n TH's for October

i=0 1 2 3 4 5 -6 Total

n=0 ;9028 .9028
1 .0 .0537 .0537

2 .0 .0141 .0104 .0245

3 .0 .0025  .2254 ,0025 .0104

4 .0 .0003 .0017 .0019 .0006 .0046

5 .0 .0 .0004 .0009 .0007 .0002 .0021

6 .0 .0 .0001 .0003 ,0004 .0002 .0 .0010

Total .9028 .0706 .0179 ,0055 .Q017 .0004 .0
Table 10

Probabilities for i THE's and n TH's for Spring

i=0 1 2 3 4 5 6 Total

n=0 . 8533 .8533
1 .0 .0727 .0727

2 .0 .0236  .0145 .0382

3 .0 .0051 .0094  .0035 .0180

4 .0 .0008 .0036 .0034 .0009 .0087

5 .0 . 0001 .0010 .0018 .0012 .0002 .0043

6 .0 .0 .0002 .0007 .0008 .0004 .0001 .0022

Total .8533 ,1024 .0288 .0094 .0029 .0006 .0001
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Table 11

Probabilities for i THE's and n TH's for Summer

i=0
n=0 .5213
1 .0
2 .0
3 .0
4 .0
5 .0
6 0
Total .5213
i=0
=0 . 8443
1 .0
3 .0
4 .0
5 .0
6 .0
Total .8443

.1845

.0707

.0178

.0034

. 0005

. 0001

. 2763

.0812

.0044

. 0006

. 0001

. 1094

. 0541
. 0411
.0182
.0059
. 0016

.1209

. 0096
.0032
.0008
. 0002

. 0305

3 4
.0148
.0168 .0039
.0107 .0059
. 0049 . 0049
.0471 .0146
Table 12

Probabilities for i THE's and n

3 4
.0041
.0035 .0011
.0017 .0012
.0006 .0018
.0099 .0031

11

5 6
. 0010
.0019 .0003
. 0029 .0003

TH's for Fall

5 6
.0003
.0004 .0001
.0007  .0001

Total
.5213
.1845
.1242
.0736
.0423
.0240

.0135

Total
.8443
.0812
.0181
.0084
. 0040

.0030



4. Summary

The model is an "in between'' result and represents a compromise
between Falls [1] who investigated the general phenomenon and Williford
and Carter [2] who investigated TH distributions over a point. As an
example, Falls [1] gives Pr 1 THE in July = .2915, Table 6 gives
Pr 1 TH in July = .1940, (say, in an area including vehicle assembly
building and surrounding launch pads) and Williford and Carter [2]
give Pr 1 TH over a point = .0723 (say, over vehicle assembly

building or one of the launch pads). Then the values

Probability over a large '"region" .2915
Probability over a small '"subregion" .1940
Probability over a ''point" .0723

substantially demonstrate the property asserted above.
Formulas (10) and (11) can be expressed in the forms
Mean(TH) = (mean of Neg. Binomial) (Mean of Truncated Poisson) (12
Variance TH = (Mean of Neg. Binomial) (Variance of Truncated

Poisson)

(13)
+ {(Mean of Truncated Poisson)z(Variance of Neg.
Binomial)

Using these formulas along with Tables 1-12 the results concerning
the whole Cape Kennedy region could be restricted to a smaller region,

e.g., the vehicle assembly building and surrounding launch pads.
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Appendix A*

Frequencies of Thunderstorm Events Containing

X Thunderstorms at Cape Kennedy

Jan. Reb. Mar. April May June July Aug. Sept. Oct. Nov.

7 18 50 37 87 182 192 201 122 35 13
1 4 15 10 25 55 90 60 35 10 2
1 3 2 5 6 10 10 5 2

1 3 5 4 3 4
2 2 2
X Spring Summer Fail Winter Annual
1 174 575 170 37 956
2 50 205 47 6 308
3 10 26 7 1 44
4 4 12 4 20
5 4 2 6

* This data was furnished by the Terrestrial Environment Branch,
Aerospace Environment Division, Aero-Astrodynamics Laboratory, George
C. Marshall Space Flight Center, Alabama. The frequencies for classes
x =12, 3, 4, 5 are approximate and are based on the information available.
The x = 1 class is exact and the rest represents a partition of the

X = 2 or more class.

13
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Appendix B¥

Frequencies of the Observed Number of Days that
Experienced X Thunderstorm Events at Cape Kennedy,
Florida for the 11-Year Period of Record

January 1957 through December 1967

Jan, Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.

335 295 308 299 266 187 177 185 228 311 321 334
4 . 9 20 18 43 77 80 89 54 17 6 3
2 4 9 10 25 40 47 30 33 9 3 2

2 3 3 3 17 26 24 12 4 2
1 3 6 9 10 3

0 2 2 3
1 1

X Spring Summer Fall

0 873 549 860

1 81 246 77

2 44 117 45

3 9 67 16

4 4 25 3

5 0 7

6 1 1

* Reprinted from Falls [1].
14




Appendix C

The program is written in FORTRAN (Version H) suitable for
processing on the IBM 360-67. Inputs required are Negative Binomial
parameter estimates P and R, Truncated Poisson parameter estimate PMU

and NTH (< 10) which is the TH's for which probabilities are computed.

Program Listing

DIMENSION PK(10,10), PROB(10,10), PROBM(10,10), TNBIN(10),
QK(10,10) 1000 READ(S,1)P,RK,PMU,NTH
1 FORMAT(3F 8.4,13)
PI = P**RK
DO 2 NX = 1,NTH
2 QK(1,NX) = 0.
DO 3 NX = 1,NTH
DO 3 I = 2,NTH

QK(I,NX) = 0.

IT=1-1
FI =1
FII = FI + 1.

XI = GAMMA(FII)
DO 30 J = 1,II
TS -J

FJ - T + 1

15




30

31

FIJ = FI - TJ + 1.

XJ = GAMMA (FJ)

X1J = GAMMA (FI1J)

FACT = XI/ (XJ*X1J)

QK(I,NX) =

PK(I,NX) = QK(I,NX)
DO 31 NX = 1,NTH
PK(1,NX) = 0.

T™ = RK

XM = GAMMA (TM)

DO 4 NX = 1,NTH

PROBM(NX) = 0.

FNX

TNX

D1

NX
FNX + 1.

GAMMA (TNX)

DO 5 I = 1,NX

FI =

FII

TK

XI

XK

FACT

D2

QI

EX

It

EX1 = (PMU**NX)*(FI**NX - PK(I,NX))

I
FI + 1.
RK + FI
GAMMA (FII)
GAMMA (TK)
= XK/ (XM*XI)
(1. - EXP(-PMU))**1I
(1. - P)Y**I

EXP (-FI*PMU)

QK(I,NX) + FACT*(TJ**NX - QK(J,NX))

16




33

32

10

11

12

13

14

15

PROB(I,NX) = FACT*PI*QI*EX*EX1/(D1*D2)

PROBM(NX) = PROBM(NX) + PROB(I,NX)

CONTINUE

DO 32 * = 1,NTH

TNBIN(I) = O.

DO 33 J = I,NTH

TNBIN(I) = TNBIN(I) + PROB(I,J)

CONTINUE

WRITE (6,6)P,RK,PMU

FORMAT (1H1,20X,3H P =,F8.4,10X,5H RK -,F8.4,10X,6H PMU -,F8.4)
WRITE (6,7)

FORMAT (1HO, 20X, 34H PROBABILITY OF I THE'S AND N TH'S)
WRITE(6,8) (T,I = 1,10)

FORMAT (1H0,5X,3H I =,10(9X,12)))

DO 9 NX = 1,NTH

WRITE (6,10)NX, (PROB{I,NX),I = 1,NX)

FORMAT (1H ,3H N =,12,9X,10(F8.4, 3X)

WRITE(6,11)

FORMAT (1HO0,20X,22H PROBABILITY OF N TH'S/)

DO 12 NX = 1,NTH

WRITE (6,13)NX, PROBM(NX)

FORMAT (1H ,20X,3H N -,12,5X,10H PROBM(N) =,F8.4)
WRITE (6,14)

FORMAT (1HO,20X,23H PROBABILITY OF I THE'S/)
WRITE(6,15)PI

FORMAT (1H ,20X,5H I - 0,5X,10H NGBIN(I) -,F8.4)

17



DO 16 I = 1,NTH
16 WRITE(6,17)1,TNBIN(I)
17 FORMAT(1H ,20X,3H I -,12,5X,10H NGBIN(I) -,F8.4)
GO TO 1000
STOP

END

18
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